Purely Refractive EDOF IOL

TECNIS

with TECNIS SIMPLICITY® Delivery System

TECNIS PureSee[™]IOL PureSee[™]IOL

with TECNIS SIMPLICITY® Delivery System

Toric II

単焦点IOLと同等の コントラスト感度

単焦点IOLと同等の 夜間光視症プロファイル 残余屈折に対する 高い耐性

単焦点IOLと同等の見やすさを提供する非回折EDOF IOL **TECNIS PureSee™**

Purely Refractive Design

単焦点IOLと同等の コントラスト感度

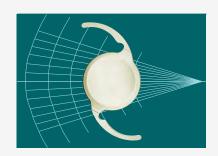
単焦点IOLと同等の 夜間光視症プロファイル

残余屈折に対する 高い耐性

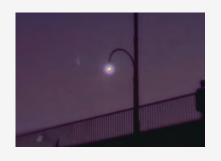
独自の屈折テクノロジー

連続的なパワーの変化により、 遠方から中間、日常生活に 必要な近方視力まで 焦点深度を拡張します。」

パワーを連続的に変化させる TECNIS Eyhance™と同等の コントラストレベルを提供

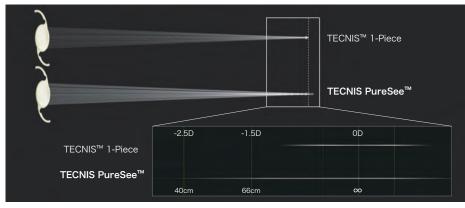

昼夜を問わず、 コントラストの高い見え方を 提供します。2-7

夜間光視症の低減

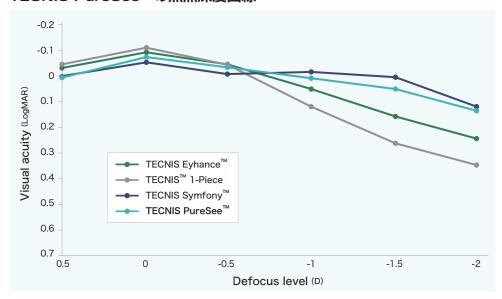

Purely Refractive Designにより、 単焦点IOLと同等の夜間光視症 プロファイルを提供します。8,9

優れた遠方裸眼視力を実現

残余屈折に対する高い耐性は、 高い患者満足度につながります。10,11,12


Purely Refractive Design

単焦点IOLと同等の 夜間光視症プロファイル


遠方、中間、及び日常生活に必要な近方視力を提供

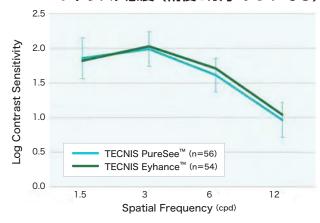
TECNIS PureSee™の独自のデザインは、光を遠方から中間、 近方に分配することにより、焦点深度を拡張します。¹

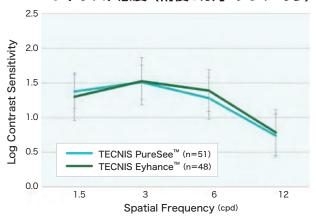
TECNIS PureSee™の光学特性

TECNIS PureSee™の焦点深度曲線

単焦点IOLと同等の夜間光視症プロファイルを実現

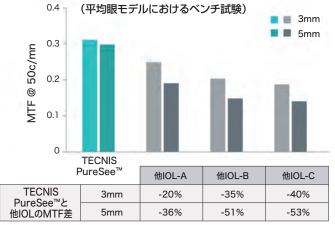
ゾーンを設けていない独自の屈折技術により、夜間のハロー、グレア、スターバーストを抑え、優れた夜間光視症プロファイルを実現します。8.9

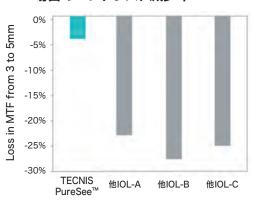



単焦点IOLと同等のコントラスト感度

術後3ヵ月のコントラスト感度は、グレアの有無にかかわらず TECNIS Eyhance™と同等でした。²

コントラスト感度(術後3ヵ月・グレアなし)

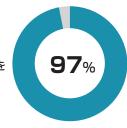

コントラスト感度(術後3ヵ月・グレアあり)


優れた遠方イメージコントラスト

TECNIS PureSee™は、優れた遠方イメージコントラストを提供し、瞳孔径による影響も軽微でした。³⁻⁷

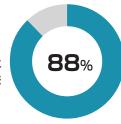
遠方イメージコントラスト

瞳孔径が3mmから5mmに変化した場合のコントラスト減少率

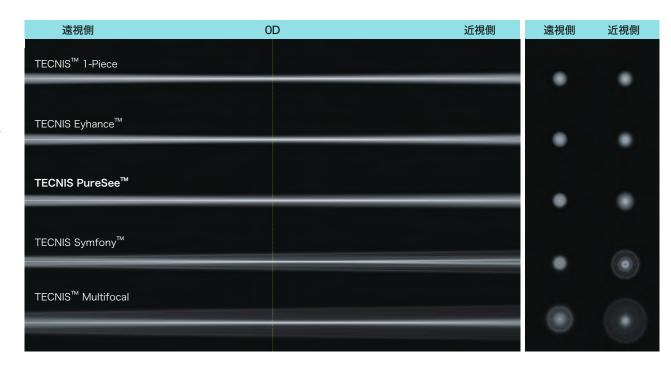


臨床研究において高い患者満足度

TECNIS PureSee™は、最初の臨床研究で高い患者満足度が示されました。12



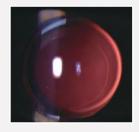
遠方を見るための 眼鏡を必要と しなかった患者様



眼鏡なしで 全体的な視力に 満足した患者様

残余屈折が生じても 単焦点IOLと同等の 光視症プロファイルを提供

平均眼モデルにおけるコンピュータシミュレーションによると、 TECNIS PureSee™は残余屈折が生じた場合でも 単焦点IOLと同等の光視症プロファイルでした。¹¹



質の高い術後視力は **TECNIS**[™] プラットフォームから

長期にわたる透明性、眼内安定性、 収差の少ない基本性能の高さ13,14,15

Material 素材

グリスニング発生を抑制す る独自の疎水性アクリル素 材、ダイヤモンドクライオレ ースカット製法を採用して な視機能を実現します。 います。

Optics 光学部

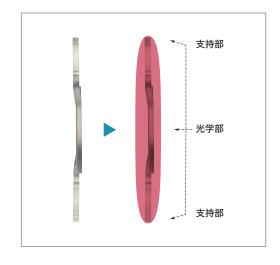
光学部前面の非球面構造 は、眼全体の球面収差を限 りなくゼロに近づけ、鮮明

Design デザイン

ProTEC360°シャープエ ッジデザインは、LECの遊 走を抑制し、PCOの発現 を制御します。

TECNIS™ Platform

球面収差をほぼゼロに低減し より鮮明な視機能を提供


平均的な角膜は+0.27 μmの球面収差を持っ ており、TECNIS™の -0.27µmの球面収差 を付加することにより 眼全体の球面収差をほ ぼゼロに低減させます。

IOL	TECNIS	非球面IOL A	球面IOL
平均角膜SA	+0.27	+0.27	+0.27
IOL SA	-0.27	-0.20	+0.00
合計残留SA	0.0	+0.07	+0.27
20/20	E	E	E

^{*}Images simulated using Zernike Tool, 6mm aperture, created by George Dai, PhD *SA correction of lens at corneal plane

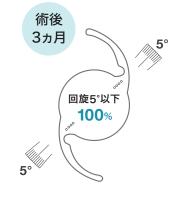
Tri-Fix3点固定方式により眼内で高い安定性®

支持部と光学部の3点で固定するデ ザインは、予測屈折値がズレにくく、 長期の安定性を提供し、中心固定を 高めます。

TECNIS PureSee[™] ToricII

乱視矯正モデルにはToric II デザインを採用

術後3ヵ月時点での回旋は5°以下となり、 TECNIS® Toric II は、位置補正が必要となる 可能性が低いことが示されました。17,18

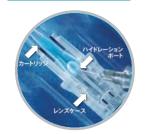

Toric I



Toric II

摩擦力向上を期待し フロストループを採用

TECNIS トーリック カリキュレータ


複数の推奨モデルが参照でき、乱視軸や 年齢などの患者ファクターを考慮し、最 適なIOLモデルの選択と術後残余乱視度 数の予測をサポートします。

www.TECNISToricCalc.com

TECNIS SIMPLICITY[™] **Delivery system**

3-Step Process

Step1: HYDRATE

水平の状態でハイドレーションポートから眼粘弾剤等を注入し、カートリッジを満たします。この段階で待機することなくStep2に進んでください。

【注】レンズケース内には眼粘弾剤 等を満たさないでください。

Step2: ADVANCE

プランジャーを、これ以上進まないところまで速やかに(1秒程度で)押し進めます。

【注】途中で止めたり、プランジャーを 戻さないでください。

プランジャーを時計回りに半回転させ、一時停止位置にセットして1分以上保持します(推奨3分以上)。 【注】Step2からレンズ放出までに10分以上経過した場合は、廃棄してください。

Step3: DELIVER

プランジャーを時計回りに回転させ、停止させることなく滑らかに1分以内にレンズを放出します。

【注】Step3からレンズ放出までに 1分以上経過した場合、またはレン ズ挿入の際に強い抵抗を感じた 場合は、使用を中止し廃棄してくだ さい。

テクニス ピュアシー オプティブルー Simplicity (モデル:DEN00V)						
販売名	TECNIS PureSee 焦点深度拡張型IOL Simplicity					
医療機器承認番号	30600BZX00167000					
光学部						
度数範囲	+5.0D~+28.0D (0.5D刻み)					
光学部径	6.0mm					
形状	Biconvex, 前面非球面, 焦点深度を拡張させる独自の屈折面					
材質	紫外線・紫色光吸収剤含有アクリルーメタクリル架橋共重合体					
屈折率	1.47 (35°C)					
エッジデザイン	ProTEC 360°エッジデザイン					
測定方法*	超音波式眼軸長測定	光干涉式眼軸長測定				
A定数	118.8	119.3				
前房深度予測値(ACD)	5.4mm	5.7mm				
Surgeon Factor(SF)**	1.68mm	1.96mm				
支持部						
全長	13.0mm					
材質	紫外線・紫色光吸収剤含有アクリルーメタクリル架橋共重合体					
デザイン	Haptics offset from optic, Tri-FIXデザイン					
インプラント方法						
プリロード式 TECNIS Simplicity™ Delivery System						

References:

- 1. TECNIS PureSee™ IOL with TECNIS Simplicity™ Delivery System, Model DEN00V DFU INT Z311782 2. DOF2023CT4036 3. DOF2023CT4017
- 4. DOF2023CT4018 5. DOF2023CT4025 6. DOR2023CT4028 7. DOF2020CT4011 8. DOF2023CT4012 9. DOF2023CT4019 10. DOF2023CT4041
- 11. DOF2023CT4011 12. DOF2023CT4043 13.Nixon DR. New technologies for premium outcomes: next generation phaco and TECNIS 1-Piece IOL. Presented at 25th Congress of ESCRS. 2007 Sep 8-12; Stockholm, Sweden 14. Piers P, Manzanera S, Prieto P, Gorceix N, Artal P. Use of adaptive optics to determine theoptimal ocular spherical aberration. J Cataract Refract Surg. 2007 Oct; 33 (10): 1721-6 15. REF2014MLT0014N 16. Data on file 115 17. 2024REF4080 18. DOF2021CT4019

テクニス ピュアシー トー	·リックⅡ オプティブ/	ν— Simplicity				
販売名	TECNIS PureSee To	TECNIS PureSee Toric 焦点深度拡張型IOL Simplicity				
医療機器承認番号	30600BZX00168000					
光学部						
モデル	DET150	DET225	DET300	DET375		
円柱度数(眼内レンズ面)	1.50D	2.25D	3.00D	3.75D		
円柱度数(角膜面)	1.03D	1.54D	2.06D	2.57D		
度数範囲	+5.0D~+28.0D (0.5D 刻み)					
光学部径	6.0mm					
形状	Biconvex, 前面非球面, 焦点深度を拡張させる独自の屈折面					
材質	紫外線·紫色光吸収剤	紫外線・紫色光吸収剤含有アクリルーメタクリル架橋共重合体				
屈折率	1.47 (35°C)	1.47 (35°C)				
エッジデザイン	ProTEC 360°エッジデザイン					
測定方法*	超音波式眼軸長測定	超音波式眼軸長測定		光干渉式眼軸長測定		
A定数	118.8	118.8		119.3		
前房深度予測值(ACD)	5.4mm	5.4mm		5.7mm		
Surgeon Factor(SF)**	1.68mm	1.68mm		1.96mm		
支持部						
全長	13.0mm					
材質	紫外線・紫色光吸収剤含有アクリルーメタクリル架橋共重合体					
デザイン	Haptics offset from optic, Tri-FIXデザイン, フロストループ					
インプラント方法	·	·				
プリロード式 TECNIS Simp	licity [™] Delivery System					

- * A定数、前房深度予測値、Surgeon Factorは参考値としてご使用ください。 レンズ度数を厳密に算出される場合、ご使用の装置やご経験に基づき、独自の数値を計算させることを推奨致します。
- ** Calculated based on Holladay I formula Holladay JT, et al. A three-part system for refining intraocular lens power calculations. J Cataract Refract Surg. 1988;14(1):17-24. REF2014CT0092.

Johnson&Johnson

エイエムオー・ジャパン 株式会社

東京都千代田区西神田3丁目5番2号